This document is a correction to Section 5-3.2 in Montgomery D. C. "Introduction to Statistical Quality Control", 4^{th} Edition, 2001. The main error in the text is that Eq. 5-31 is not an unbiased estimator of E(S); the right-hand side of Eq. 5-31 is an unbiased estimator of σ . In addition, there is rounding error in the calculation of " σ ".

Noel Artiles-León, Ph.D., Jan. 2001

5-3.2 The $\overline{\chi}$ and S Control Charts with Variable Sample Size

The $\bar{\times}$ and S control charts are relatively easy to apply in cases where the sample sizes are variable. In this case, we should use a weighted average approach in estimating μ and σ . If n_i is the number of observations in the ith sample, then use

$$\hat{\mu} = \frac{\sum_{i=1}^{m} n_i x_i}{\sum_{i=1}^{m} n_i}, \quad \text{(5-30)}, \quad \text{and} \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^{m} (n_i - 1) S_i^2}{\sum_{i=1}^{m} n_i - m}, \quad \text{(5-31)},$$

to estimate the process mean and variance, respectively. Notice that, since S_i^2 is an unbiased estimator of σ^2 , Ec. 5-31, being a weighted average of unbiased estimators of σ^2 , gives an unbiased estimator of σ^2 . The control limits are then calculated as:

For
$$\overline{X}$$
 chart: $\hat{\mu} \pm 3\sqrt{\frac{\hat{\sigma}^2}{n_i}}$

For S chart:
$$\hat{\sigma}(c_4 \pm 3\sqrt{1-c_4^2})$$
, or LCL = $B_5 \hat{\sigma}$ and UCL = $B_6 \hat{\sigma}$

The constants c_4 , B_5 and B_6 will depend on the sample size used in each individual subgroup.

For S² chart:
$$\hat{\sigma}^2 \left(1 \pm 3 \sqrt{\frac{2}{n_i - 1}} \right)$$

EXAMPLE 5-4

Consider the data in Table 5-4, which is a modification of the piston-ring data used previously. Note that the sample sizes vary from n=3 to n=5. We may use the procedure described above to set up the \overline{X} and S control charts. The estimators of μ and σ , using Ecs. 5-30 and 5-31, are:

$$\hat{\boldsymbol{\mu}} = 8362.09 \, / \, 113 = 74.0008 \text{ and} \\ \hat{\boldsymbol{\sigma}}^2 = (0.00021820x4 + 0.00002100x2 + 0.00021750x4 + ... + 0.00026170x4) \, / \, 88 = \\ \hat{\boldsymbol{\sigma}}^2 = 0.009319933/88 = 0.000105908, \, \text{or} \, \hat{\boldsymbol{\sigma}} = 0.01029$$

Therefore, the center line of the \overline{X} chart = 74.0008, and the center line of the S chart is:

- for n = 3, E(S) = $c_4 \sigma$ = 0.8862 (.01029) = 0.009120
- for n = 4, $E(S) = c_4 \sigma = 0.9213 (.01029) = 0.009481$
- for n = 5, E(S) = $c_4 \sigma = 0.9400 (.01029) = 0.009674$

The control limits for the \overline{X} chart are: $\hat{\mu} \pm 3\sqrt{\frac{\hat{\sigma}^2}{n_i}}$,

- for n = 3, $74.0008\pm3(0.01029)/\sqrt{3} = (73.983, 74.019)$
- for n = 4, $74.0008\pm3(0.01029)/\sqrt{4} = (73.985, 74.016)$
- for n = 5, $74.0008\pm3(0.01029)/\sqrt{5} = (73.987, 74.015)$

The control limits for the S chart are: $\hat{\sigma}(c_4 \pm 3\sqrt{1-c_4^2})$

- for n = 3, $(0.01029)[0.8862+3\sqrt{(1+0.8862^2)}] = 0.0234$
- for n = 4, $(0.01029)[0.9213+3\sqrt{(1+0.9213^2)}] = 0.0215$
- for n = 5, $(0.01029)[0.9400+3\sqrt{(1+0.9400^2)}] = 0.0202$

The control limits calculations for all 25 samples are summarized in Table 5-5. The control charts are plotted in Fig. 5-20.

k	Observations					\overline{X}	S ²	S	⊼ chart		S chart
		003	Civati	OHS		^			LCL	UCL	UCL
1	74.030	74.002	74.019	73.992	74.008	74.0102	0.00021820	0.0148	73.987	74.015	0.0202
2	73.995	73.992	74.001			73.996	0.00002100	0.0046	73.983	74.019	0.0234
3	73.988	74.024	74.021	74.005	74.002	74.0080	0.00021750	0.0147	73.987	74.015	0.0202
4	74.002	73.996	73.993	74.015	74.009	74.0030	0.00008250	0.0091	73.987	74.015	0.0202
5	73.992	74.007	74.015	73.989	74.014	74.0034	0.00014930	0.0122	73.987	74.015	0.0202
6	74.009	73.994	73.997	73.985		73.9963	0.00009825	0.0099	73.985	74.016	0.0215
7	73.995	74.006	73.994	74.000		73.9988	0.00003025	0.0055	73.985	74.016	0.0215
8	73.985	74.003	73.993	74.015	73.988	73.9968	0.00015020	0.0123	73.987	74.015	0.0202
9	74.008	73.995	74.009	74.005		74.0043	0.00004092	0.0064	73.985	74.016	0.0215
10	73.998	74.000	73.990	74.007	73.995	73.9980	0.00003950	0.0063	73.987	74.015	0.0202
11	73.994	73.998	73.994	73.995	73.990	73.9942	0.00000820	0.0029	73.987	74.015	0.0202
12	74.004	74.000	74.007	74.000	73.996	74.0014	0.00001780	0.0042	73.987	74.015	0.0202
13	73.983	74.002	73.998			73.9943	0.00010033	0.0100	73.983	74.019	0.0234
14	74.006	73.967	73.994	74.000	73.984	73.9902	0.00023420	0.0153	73.987	74.015	0.0202
15	74.012	74.014	73.998			74.0080	0.00007600	0.0087	73.983	74.019	0.0234
16	74.000	73.984	74.005	73.998	73.996	73.9966	0.00006080	0.0078	73.987	74.015	0.0202
17	73.994	74.012	73.986	74.005		73.9993	0.00013292	0.0115	73.985	74.016	0.0215
18	74.006	74.010	74.018	74.003	74.000	74.0074	0.00004880	0.0070	73.987	74.015	0.0202
19	73.984	74.002	74.003	74.005	73.997	73.9982	0.00007170	0.0085	73.987	74.015	0.0202
20	74.000	74.010	74.013			74.0077	0.00004633	0.0068	73.983	74.019	0.0234
21	73.982	74.001	74.015	74.005	73.996	73.9998	0.00014770	0.0122	73.987	74.015	0.0202
22	74.004	73.999	73.990	74.006	74.009	74.0016	0.00005530	0.0074	73.987	74.015	0.0202
23	74.010	73.989	73.990	74.009	74.014	74.0024	0.00014230	0.0119	73.987	74.015	0.0202
24	74.015	74.008	73.993	74.000	74.010	74.0052	0.00007570	0.0087	73.987	74.015	0.0202
25	73.982	73.984	73.995	74.017	74.013	73.9982	0.00026170	0.0162	73.987	74.015	0.0202